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a b s t r a c t

High shear wet granulation is traditionally considered a highly unrepeatable solids processing step, with
the considerable domination of art over science. In the United States, the Food and Drug Administration, a
major regulator of pharmaceutical processes is encouraging pharmaceutical companies to understand the
science and engineering aspects of their process, and move from the current qualitative understanding
to a quantitative and mechanistic understanding of their processes.

In order to examine the intrinsic variability of granulation, many carefully controlled repeat granu-
lations were performed in a high shear mixer and the size distributions of the resulting granules were
analysed, along with traditional on-line process data surrounding current consumption of the mixer,
and temperature of the granulating mass. The raw experimental results were combined and analysed

with the use of multivariate techniques to examine the causes of variability. It is seen that none of the
measured variables fully explain the variability observed and that despite the care taken to repeat exact
conditions, the granules still produced were variable.

Final analysis of the data shows that batches can be separated into two different sets, distinguished by
different operators showing that minute unrecorded changes to the experimentation process, affect the
numerical outcome of the procedures. The current study shows the power of multivariate techniques to

insig
analyse data, and provide

. Introduction

In high shear wet granulation, powder is combined with liq-
id in a high shear mixer to produce powder agglomerates where

ndividual powder particles are still distinguishable. This is a com-
on step within the pharmaceutical industry where powders are
ixed together and agglomerated to enhance dissolution profiles,

owability and reduce process driven segregation. It is commonly
cknowledged that this granulation step is the most variable step
ith the pharmaceutical processing chain. Little academic research

s available in the open literature to compare the variability of gran-
lation, and to provide a measure of the variability that one might
xpect from the manufacturing process itself.

Lately, driven by the United States, Food and Drug Adminis-
ration (FDA) quality by design initiative [1], much research has

een conducted to look for changing conditions, and characteris-
ic signatures of the granulation process, that are ideally powder
nd granulator independent. Some success has been reported using
ower curves [2–4] and torque data to express the variability in the
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ht into the variability of the underlying process.
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process, and enhance knowledge of what is happening in the mixer
bowl from a bulk level. And work progresses [5–9] to examine and
explain the stepwise evolution of granules over time.

From a pharmaceutical perspective, the bulk understanding of
granulation is an intensely cost driven process, as a wasted batch
equates to many thousands of pounds, providing lost earnings and
missed targets. Control and monitoring schema for the process are
slowly becoming apparent and the burgeoning field of multivariate
analysis (or chemometrics), is being used to increase the under-
standing gained from the huge amounts of multivariate time series
process data now being generated from today’s modern on and off
line process measurement instruments [10–16].

Indeed, the interaction of the control schema and the bulk pro-
cess is the subject of the current draft process validation guidance
from the FDA [17]. This guidance renews the FDA’s call for well
understood and quality by design approaches to pharmaceutical
manufacturing, with high degrees of assurance that the process
is operating within specified limits of safety, hence producing on
specification drug products, and that, crucially; the variability of the

process is explainable and quantified. This emphasizes the use of
multivariate analysis within the process development framework,
to examine this variation, and to try and pin point batch–batch
deviations from the on specification, in order for the continued life
cycle approach to be applied to the products in question.

dx.doi.org/10.1016/j.cej.2010.08.031
http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:a.d.salman@sheffield.ac.uk
dx.doi.org/10.1016/j.cej.2010.08.031
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Fig. 1. Experimental timeline, blocks show processing, an

Attempts to use multivariate methods capable of visualis-
ng these deviations and subtle changes, such as partial least
quares (PLS) [13,18], principal component analysis (PCA) [2], self-
rganizing maps (SOM) [19], and other mathematical techniques
o enable the visualisation and understanding of multidimensional
ets from process measurement techniques (e.g. near-infrared,
hemical imaging), process parameters (e.g. temperatures and
ressure sensors) or product attributes (e.g. tablet dissolution,
ranule density) are slowly becoming commonplace in indus-
rial experimental design, analysis and in the future, control
20–22].

In the context of this study, the primary goal of multivariate
nalysis is to allow for enhanced understanding and appreciation
f variability with granulation data sets and allow for a method
o isolate the individual parameters responsible for the variability
een, in an attempt to move granulation technology towards the
esired six-sigma goal.

. Materials and methods

As these experiments are designed to assess variability of the
ranulation unit operation it is vital to remove as much variabil-
ty from the process and setup conditions as possible. Thus these
xperiments were performed using the same granulator with a
epeatedly calibrated and checked experimental setup, under the
uise of good manufacturing practice (GMP), in the same tempera-
ure and humidity controlled room, designed to maintain constant
onditions throughout the experiments. Two operators performed
he experiments, both following the same carefully documented
rocedure summarised below.

.1. Materials
A common set of pharmaceutical excipients were used in
hese placebo trials, 73.5% (w/w) lactose monohydrate (Pham-
tose 200 M, DMV, The Netherlands), 20% (w/w) microcrystalline
ellulose (Avicel Ph101, FMC BioPloymer, USA), 5% (w/w) hydroxy-
ropyl-methyl-cellulose (Methocel E5, Dow Chemicals USA), and

Fig. 2. Impeller current and temperature
rvals represent stops for sampling from the powder bed.

1.5% (w/w) Cross carmellose Sodium (Ac-Di-Sol, FMC BioPloymer,
USA).

2.2. Granulation equipment

A PMA65L Fielder granulator, with a bottom driven, three bladed
impeller rotating at 200 rpm with blades inclined at 30◦ to the
horizontal. A horizontal chopper is fitted and rotated at 1500 rpm
during the water addition and wet massing phase of granulation.
Water was added at a constant rate from a loss in weight feed
reservoir via a spray nozzle and peristaltic pump, (Watson-Marlow,
502U).

2.3. Data collection and analysis

Proprietary data collection software was used to collect on-
line data regarding the temperature and humidity of the process
room and data surrounding the granulator, (current draw, temper-
ature, impeller and chopper speed). Impeller current was measured
directly from the motor drive of the granulator, while temperature
is measured using a temperature sensor fitted to the edge of the
bowl.

Size distributions were measured by sampling 5 g of the
granules via an automated image analysis system (Qicpic, Sym-
patec, Germany). This sampling was not a major source of error
(X50 ± 30 �m) as confirmed by repeat sampling of the same granu-
lation samples. 100 logarithmic size classes were chosen between
20 and 7000 �m.

Data were collated within Microsoft Excel, and further analysed
using scripts written using built in matlab routines. Cross corre-
lation analysis and principal component analysis was performed
using matlab 7.5 (R2007b).
2.4. Experimental procedure

In total 11 kg (±2 g) of placebo material was loaded into the
granulator, on-line data collection was started, and then pre-
blended at 100 rpm for 5 min, until fully mixed. The granulator

for 5 sample batches from the data.
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as stopped. The water nozzle inserted, and the impeller speed
et to 200 rpm, a chopper speed of 1500 rpm was set. When the
mpeller and chopper were up to speed, water addition was started
t 220 g/min from the pump (pre-calibrated). This continued for
min, when the water was stopped, and the granulator opened
o sample and remove approximately 50 g of granules onto an alu-
inium tray and sealed into a plastic bag. The granulator and water

ddition system were immediately re-started, with repeated sam-
les at 4, 6, and 8 min. For the last 2 min no water was added, and
he powder mix was just agitated with the chopper and impeller.

Fig. 3. Example size distributions (lbar, mean partic
ing Journal 164 (2010) 285–291 287

The process was deemed complete at 10 min of granulation. Par-
ticle size for the samples was measured at the end of the batch
approximately 30 min after the experiment had completed (Fig. 1).

3. Results
3.1. Granulator impeller current and temperature data

Using the data collection software, it is possible to collate data
for the following batches, and provide this for plotting. Fig. 2 show 5

le size of bin) q0 (number weighted density).
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Fig. 4. A box plot of the data showing the variability in final granule size.

amples of the temperature and power variations recorded during
he granulations.

It is seen that the granulations are repeatable with both the
urrent draw and temperature increasing throughout the batch.
he sampling points for the granulations can clearly be seen as the
urrent draw drops quickly to a lower level as the granulator the
mpeller is turned off. The sampling times recorded at ±2 s from
heir desired values, the sampling stage creates a bigger variation
n overall process time. This is symptomatic of human controlled
xperimentation, and is a major uncontrolled factor in this exper-
mental system. The temperature of the granulator bowl is shown
o vary by 4 ◦C during the experimental set, this is accounted for by
uccessive experimentations as they warm the bowl, and is again
omething uncontrolled in the experiments due the huge mass of
ranulator and its housing.

.2. Granule size distributions

The number size distributions as generated by the QicPic plat-
orm are shown in Fig. 3. It is seen that there are a very large number
f fines within the system. The consistency of the methods can be
een, which show, very similar distributions.

The granules seem to grow steadily with the first 8 min of pro-
essing and then slightly within the wet massing stage. The number
istributions are consistent to within ±50 �m of the mean for all
he data sets, this is a reproducible measure, as sample to sample
ariation of similar batches was recorded at approximately ±30 �m
or different samples from within the same batch. To show the vari-
bility in the final distributions, a box plot of the granules sampled
ata from the end of the granulation is shown in Fig. 4. This figure
hows the variability recorded in the batches, and how this is con-
istent across batches. The box represents the inter-quartile range
f the batches, while the mean is shown by the line across the width
ox.

. Analysis and discussion

.1. Impeller current and temperature data

An often quoted control method within industry is the use of

ower, torque or impeller current curves [3,4,23–27] to provide
more sophisticated control method than simply granulating for
set period of time. Thus, due to the consistent method of these

ranulations, it was often accepted that the power curve would
e able to explain some of the variability noticed within the size
Fig. 5. Showing the alignment process for impeller current and the corresponding
trends.

distributions. Fig. 5 shows the impeller current curves over time
after stretching and aligning the impeller current curves to provide
a constant basis for further analysis, and removing the slight timing
inaccuracies (±2 s) caused by the human operated nature of the
experiments. This stretching and aligning procedure is achieved, by
interpolating to create a fixed number of data points, between the
two key steps of off and on for each sampling interval. The removal
of the power consumption data for the sampling interval periods
causes the x axes to contract, in Fig. 5 when compared with Fig. 2
that shows the total process time.

The curves show repeatability, and a certain characteristic
shape, limited by measurement noise within the granulator mea-
surement system during the dry mix phase and subsequently
slowly increasing with time as more water is added. During the
wet massing phase there is still significant increase in observed
current as the granulator works harder moving the moist cohesive
granular mass around within the bowl. Despite the repeated condi-
tions the variability in measured current increases as the process is
continued. At the end of the process after 15 min of processing the
measured current lies between approximately 2000 and 3300 mA,
a large and significant variation in data output.

4.2. Principal component analysis

PCA is a widespread multivariate technique that is used to
summarise main trends, e.g. groups of similar batches, outliers,
characteristic variables, in large multidimensional datasets. The
procedure extracts from the original variables a small subset of new
variables (principal components) that geometrically correspond to
the direction of main variability in the multidimensional space, and
can be used to generate scatter plots representing the relative simi-
larity of the objects analysed. The procedure is particularly effective
when data are highly correlated, as is apparent from Fig. 5.

In this case PCA is applied on both impeller current and temper-
ature data after alignment, with results summarised in the scatter
plot in Fig. 6. Two principal components are used to represent
the relative similarity of batches, representing approximately half
(37% + 14% = 51%) of the overall variability in the profiles.
4.3. Assessment of repeatability

The proposed way of quantifying repeatability on the basis of
impeller current profiles is that of measuring an index that directly
relates to the amount of correlation in each 2 min sampling interval.
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Fig. 6. Showing principal component analysis of aligned granulator current and
temperature data (lighter colours show higher final temperatures, bigger points
s
how higher final impeller currents).

Fig. 7. K-Index of the granulation run
ing Journal 164 (2010) 285–291 289

The closer (more correlated) the current curves, the more repeat-
able the process is thought to be. The procedure relies again on
PCA: the principle is that highly correlated data can be represented
efficiently by few components that will span a larger percentage
variability of the original dataset. The index to measure repeatabil-
ity is calculated as [28]:

K =
∑p

m=1

∣
∣EVm − (1/p)

∣
∣

2(p − 1)/p
× 100 with 0 ≤ K ≤ 100 with EVm

= �m∑p
m=1�m

(1)

where p is the number of principal components selected to describe
the dataset and �m is the eigenvalue of the m-th component.

This index is sensitive to noise and trajectory divergence, but
it insensitive to trajectory offset, as caused by differing start-up
conditions. It is described using one value for all trajectories under
consideration, showing the total repeatability per sampling interval
of the data.
If the data is broken into 6 segments (dry mix, 4 sample points,
and then final wet massing, as shown in Fig. 2) and then anal-
ysed from Fig. 7 it is shown that the K-index slowly increases over
time, up to 8 min, were the score is higher, so that it is shown that
granulator current is a repeatable measure of granulation, even

s (plot colours same as Fig. 5).
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ig. 8. Correlation of 10×, 50× and 90× to impeller current change (one value for
ach experiemtnal set, realting change in impleler current to change in particle size
or each experiment for all times).

f not by “absolute” value, where raw numerical values can be
sed.

It is interesting to note two things from Fig. 7. Firstly the nature
f the graph, the K-index is seen to increase during the progress
f water addition 0–8 min, indicating that adding water, leads to a
etter consistency to the impeller current data. The K-index then
ecreases during wet massing (8–10 min), showing that the process
ecomes less well controlled during this time as the granules grow
rom the wet mass.

.4. Size distributions correlation of ×10, ×50 and ×90 to
mpeller current

To see if the differences in impeller current draw were corre-
ated to the size distributions measured, to this end, 3 percentiles
f the size distributions (×10, ×50, ×90) at each sampling time were
aken as descriptors of the granulation process and cross-correlated
o the impeller current change over each sampling time, calculated
etween the relative increases in each sample time of 2 min of the

mpeller Current and the relative increases in ×10, ×50, ×90 per-
entiles for each batch. The equation below shows the correlation as
stimated between the vector of impeller current change over each
ampling time (�IFLC) and the vector of median difference over
ach sampling time (�x50), where over-line indicates the average
f the two vectors, s their standard deviation and n the number of
lements:

(�IFLC, �x50) = (�IFLCi − �IFLC)(�x50i − �x50)
(n − 1)s(�IFLC)s(�x50)

(2)

If impeller current is a “good” predictor of granulation and gran-
le size, then it would be expected that the results would be highly
orrelated, i.e. a change in impeller current is related to a change in
article size. This would then correlate to a 100% value in Fig. 8.

Fig. 8 shows this correlation. It is shown that there is indeed a
istinct association between granulator current and granule size for
he number distribution. There is reasonable correlation between
he impellor current measure and the granule size for each sub-
nterval. However there is also great variation in the magnitude of
his association, showing that the impeller current is not fully able
o correlate to size within the granulator, and that if used as a con-

rol scheme would cause some on target batches (such as E8) to be
crapped causing great loss of material and investment. This would
ranslate that such simple correlations, are not useful as predictors
f the process output, and that more performance criteria would
chieve extra clarity in the results.
Fig. 9. Combined PCA on experiments with a complete data set (lighter colours
show higher final temperatures, bigger points show higher final impeller currents).

4.5. Principal component analysis on combined data

Combining the whole data set and then performing principal
component analysis on the data collected (impeller current, prod-
uct temperature, and particle size (p0)) allows for an appreciation
of clustering within the data, and to see if any overall trend can be
identified.

The principal components distinguish between the data well,
with the first component (x axes) corresponding to final product
temperature, with the hotter batches are towards the right, while
the second component (y axes), while not attributable to anything
directly in the data, (impeller current or temperature) partitions the
data into two seemingly separate groups, using a positive second
component to distinguish one group (E1–E7) and a negative second
component to differentiate the other (E8–E12). These experiments
are separated by two different operators, showing the power of PCA
to demonstrate that even minor, seemingly insignificant changes
to procedure, can affect the results of the process (Fig. 9).

5. Conclusions

The results from this paper show that despite the best
efforts, (temperature and humidity controlled room, same material
batches, clearly defined experimental procedure, same equipment)
to keep the conditions of the granulator, materials, and process-
ing steps the same, the output from the granulation process is still
highly variable with respect to the recorded variables, or impeller
current draw, powder temperature, and recorded particle size.

The significance of this result for a pharmaceutical manufac-
turing environment, is that, as detected here, the second most
significant feature giving rise to variability in the process was that
of operator, this has considerable implications, in that, product
variability may be explained by the slight differences recorded for
experimental operators, and their own intrinsic human variability
in ways of working, despite the closely controlled method descrip-
tion.

There is a need to examine this further, if essentially the same
operating conditions and process setup as reported here, produce
different granules, this the shows the complicated, multidimen-

sional nature of granulation. Obviously the variables measured are
not enough to explain the process fully so any control schema based
on such measurements can be used as a guide only. Work to reduce
errors further by means of developing fully automated granulation
systems, is ongoing.
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